Multimodal Biomedical Signal Processing End Abstracts Integrating Video and Accelerometer Signals for Nocturnal Epileptic Seizure Detection

نویسنده

  • Borbala Hunyadi
چکیده

Epileptic seizure detection is traditionally done using video/electroencephalogram (EEG) monitoring, which is not applicable in a home situation. In recent years, attempts have been made to detect the seizures using other modalities. In this research we investigate if a combined usage of accelerometers attached to the limbs and video data would increase the performance compared to a single modality approach. Therefore, we used two existing approaches for seizure detection in accelerometers and video and combined them using a linear discriminant analysis (LDA) classifier in a late integration. We compared these results also with an early integration of the accelerometer and video features. The single modality results give a sensitivity and PPV for the accelerometers of 83.33% and 100.00% and for the video of 70.00% and 97.22%, respectively. The early integration does not seem to improve performance (sens 83.33% and PPV 96.00%) where the late integration gives a small increase in sensitivity (86.67%), but a decrease in PPV (97.50%).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Detection of seizure signals in newborns

This paper considers a system design for processing a multidimensional biomedical signal formed by EEG, ECG, EOG and motion recorded from a newborn, for the purpose of detection of epileptic seizures in newborns as an extension of the method reported in [1, 8]. We describe the proposed design, and discuss how the signals will be analysed and fused to detect the occurrence of seizure. We also di...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013